
Int..L Multiphase Flow, Vol. L pp. 181-195. Pergamon/Elsevier, 1976. Printed in Great Britain. 

C O N D E N S A T I O N  O F  A M M O N I A  BY 

H O M O G E N E O U S  N U C L E A T I O N  IN  

S U P E R S O N I C  N O Z Z L E S  

PHILIPPE MATHIEU 

Department of Nuclear Engineering, University of Li/~ge, 75, rue du VaI-Benoit, 4000 Liege, Belgium 

(Received lO June 1974) 

Abstract--The problem of the condensation of ammonia, mixed with an inert gas (air or helium), during a 
supersonic expansion in a nozzle is studied theoretically. In the absence of particle coalescence phenomena, 
the condensation zone in a slowly divergent straight nozzle may be divided into a nucleation zone and a growth 
zone. A new formulation of the system of the differential equations which replaces the equation governing the 
condensate mass fraction is proposed. This formulation involves the calculation of quantities related to the 
description of the particle size distribution: the mean size, the number of particles per unit time, the second and 
third centered relative moments. The three latter quantities are conserved in the growth zone, leading to some 
substantial numerical advantages. 

Profiles of the flow quantities, such as the condensate mass fraction and the particle-size distributions, are 
obtained in the case of a stationary one-dimensional flow. The influences of the value of the inert gas mass 
fraction in the nozzle reservoir, of the nature of the inert gas and of the form of the expression of the nucleation 
rate are examined. 

Theoretical results are compared with experimental data and a good agreement is observed. 

INTRODUCTION 

Condensation phenomena in thermodynamic conditions remote from an equilibrium state occur in 
many practical applications. The influence of a condensed phase on the flow of a vapor through a 
nozzle or between the blades of a wet steam turbine is of particular interest in the nuclear field 
Indeed, pressurized water nuclear reactors, which constitute the most widely used nuclear energy 
sources for the near future, provide practically saturated steam at the first stages of a turbine. The 
presence of water droplets raises important problems of efficiency reduction, of corrosion, and 
erosion. 

Condensation of a vapor, in mixture with an inert gas, is an important consideration in the 
design of supersonic and hypersonic wind tunnels, where the formation of droplets must be 
prohibited. In the same way in propulsion devices such as rocket exhaust nozzles which expand 
mixtures of condensable vapors and inert particles, the effects of condensation are significant. 

Models for weather prediction rest on the understanding of the droplet formation which 
produces fogs and rain. Similarly, mathematical models of pollution depend on the description of 
two-phase condensing flows. 

To clarify the understanding of a condensation process, the properties of the condensation zone 
of a vapor are studied in the simplest configuration, i.e. in a one-dimensional flow through a nozzle. 
Ammonia has been selected as a test fluid because its physical properties, such as the high value of 
the ratio of the latent heat of condensation to the specific heat, lead to a very clear illustration of the 
evolution of the flow quantities in the different parts of the condensation zone. Jaeger (1966), 
Kremmer & Okurounmu 0965) and Jaeger et al. (1969) have experimented on ammonia 
condensation, but principally in the presence of a low quantity of water vapor. The experimental 
data of Jaeger (1966) and Jaeger et al. (1969) tend to show that ammonia is well described by the 
nucleation rate expression proposed by Lothe & Pound (1962). 

In this paper the condensation of ammonia, in mixture with an inert gas, during a supersonic 
expansion through a nozzle is examined. Oswatitsch (1941, 1942) produced the pioneering work on 
condensation phenomena. He formulated the general equations governing nozzle flows with a 
change of phase and discussed the necessary assumptions in detail. Wegener (1969) has made a 
complete review of previous work in this field. 
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We propose a new formulation for the mathematical description of the particle cloud and derive 
a system of differential equations for the calculation of the condensate mass fraction which govern 
quantities describing physically the particle size distribution. 

MATHEMATICAL MODEL OF NON-EQUILIBRIUM CONDENSATION 

Delhaye (1968), Marble (1963, 1970) and Mathieu (1975) among others have derived a general 
system of vectorial conservation equations for each of the phases of a two-phase flow with mass 
transfer. 

In the description of the condensation process, the Knudsen number based on the particle size 
Knp = A/2r, where a is the mean free path of the gas molecules and r the size of the particle, plays 
the following dominant role: for very small or very large values of that number compared with 
unity, the gas flow around the particle corresponds respectively to the continuum or to the free 
molecular regime approximation. In a continuum, the mean velocity of the condensing molecules is 
the particle velocity. Indeed, the vapor molecules which are condensing on the particle surface 
diffuse through the gas around it. At the moment of their capture, the vapor molecules move with 
the velocity of the gas-particle interface. The total momentum transfer between the phases per unit 
volume of fluid is then 

F~ + Fp vp, [1] 

where Fp is the force exerted by the gas on the particle cloud per unit volume of fluid, Fp the local 
rate of mass transfer of vapor from the gas to the particles per unit volume of fluid and vp is the 
barycentric velocity of the particle cloud. The total energy exchanged between gas and particles 
per unit volume of fluid is 

F,,.v,, + Q,, + r,,[hv(T,,)+~ v,,2] , [2] 

where Qp is the heat quantity given up per unit time and unit volume of fluid by the gas to the 
particles, Tp is the mean temperature of the particle cloud and hv is the vapor enthalpy per unit 
mass. 

In a free molecular environment, the vapor molecules strike the particle surface practically 
without any mutual collisions. They are consequently captured in the gas dynamic and 
thermodynamic conditions. This capture only changes the terms associated with the mass transfer, 
which become 

Fpvo and Fp[hv(To)+~ vo 2] [3] 

where vo is the barycentric velocity of the gas and To its mean temperature. 
In the approximation of the continuum, the conservation equations of mass, of momentum and 

of enthalpy for each phase may be written as 

Opo ~_ div (pa vo) = - F. ,  
Ot 

_~e/+ (p,.v~) F~, div 

[4] 

[51 

where p6 and pp are respectively the mass of gas and of condensed phase per unit volume of fluid; 
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aVe+ 
p~-~-- p~(Ve .grad)ve = - grad P + div T8 

- F~ + r~  ( r e  - v, ,) ,  

OVp + , 
po ~ po tvo .grad)v~ = Fo 

[6] 

[7] 

where P is the pressure in the gas and __I' 8 the viscous stress tensor in the gas; 

Oho ~p 
+ ~-t + ve .grad P + TS: grad ve p ~ -  pove'grad he = 

1 2 - div qe +Fp ' (Ve -Vp) -Op-Fp[h~( r , , ) - he ( r e )+~ lvo -vp l  ] ,  [8] 

Ohp 
p~-~- + p~ Vp .graa h~ = Q~ + r~L (T~), [9] 

where ho and hp are respectively the cnthalpies of the gas and of the particle cloud per unit mass, 

qe the heat flux vector in the gas, and L the latent heat of condensation per unit mass. 
In these balance equations, the mass, momentum and heat transfers between the phases may be 

expressed in the approximation of the continuum and in the Stokes' approximation, i.e. 

Rep = 9...l_,.uiv o - % I , r  1 ,  [101 
/xo 

where ~e is the dynamic viscosity of the gas, by the following expressions: 

r ,  = P-~ [P,,(Te)-Ps~t(Tp)] 1 p, 1 r2 
• io L -P~(-T-~ ,] with " i o = ~ - F  , [11] 

"iO is the characteristic relaxation time associated with the mass-transfer process governed by the 
vapor diffusion through the gas, P~ and #~ are the partial pressure and the density of the vapor 
respectively, P . t  is the saturation pressure of the vapor at the particle surface, p, is the density of 
the condensed phase and D is the binary diffusion coefficient of the vapor in the gas; 

2_p2_ 2 F.=&(vo-v.) ' io with "i~=~/zer , [12] 

3 p r C s  "i~, [13] QP = ~'ir Cs (Te - Tp) with 'IT = ~ (.~pe 

ro and ¢T are the characteristic relaxation times of velocity and temperature respectively, Cs and Cpe 
are the specific heats of the condensed phase and of the gas respectively and Pr is the gas Prandtl 
number (Pr = I.~eCm/Ae where Ao is the gas thermal conductivity). 

For high values of the Knudsen number Knp, the drag coefficient and the Nusselt number are 
corrected by expressions depending on Kn~ and given, among others, in the following references: 
Schaaf & Chambrd (1958), Fuchs 0959, 1964), Gyarmathy (1962, 1974), Hidy & Brock (1970). 

APPLICATION OF THE MATHEMATICAL MODEL OF CONDENSATION TO THE 
STUDY OF THE CONDENSATION ZONE IN A ONE-DIMENSIONAL FLOW 

The condensation of a vapor of ammonia is examined in the supersonic part of a slowly 
divergent straight nozzle, under the usual assumptions proposed by Oswatitsch (1941) and 
specified by many authors, such as Wegener and his collaborators. 
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Wegener (1969), Wegener & Mack (1958), Wegener et al. (1972), among others, have shown 
that, under the conditions prevailing in supersonic nozzle expansions, the nucleation process is 
practically homogeneous provided that the concentrations in dust particles do not exceed about 
1012 particles/m 3. Moreover, coalescence phenomena may be neglected for the typical particle 
concentrations in a condensation process. 

The results of our computations show that, in the absence of particle coalescence, the 
condensation zone may be divided into two spatially separated zones: 

(1) a narrow region, called the "nucleation zone", where the nuclei of critical size r* appear at a 
rate J, mainly depending upon the prevailing supersaturation: S = P~/P,a,; 

(2) a "growth zone", in which the probability of formation of new nuclei becomes negligible and 
where the critical nuclei grow by capture of molecules of the surrounding vapor at a rate depending 
upon the droplet growth law. The supersaturation S is the main quantity governing the 
condensation process, since the nucleation rate J and the critical size r* strongly depend on it. 

No significant appearance of the condensed phase is observed before a certain degree of 
supersaturation of the vapor is reached, for which the critical size r* has become sufficiently small. 
As r* is small, the value of J increases, giving rise to the rapid formation of a large number of 
nuclei. Then the supersaturation state collapses. This is due partly but not significantly to the 
decrease in the partial pressure of the vapor by depletion in the condensation process and mainly to 
the increase in the saturation pressure. The latter is due to the heating of the gas by the release of 
the latent heat of condensation. Then J falls very quickly and the nucleation zone ends. The 
formation of the condensed phase leads to deviations in the variations of flow quantities with 
respect to their isentropic variations. The jump in these quantities is initiated in the nucleation zone 
and develops afterwards in the growth zone until the two phases approach an equilibrium state. 

STUDY OF THE NUCLEATION ZONE 
The present status of theoretical and experimental knowledge does not suggest which of the 

classical expression or the Lothe & Pound (1969) expression is the more suitable one for the 
nucleation rate J. 

The experimental results of Jaeger (1966), Kremmer & Okuroumu (1963) and Jaeger et al. (1969) 
show that the theoretical results obtained for ammonia may agree with the experimental ones on 
the only condition that the Lothe & Pound (1969) expression for J is introduced into the 
mathematical formalism. However, this favorable conclusion as regards the validity of the Lothe & 
Pound (1969) expression of the homogeneous nucleation rate may perhaps be too optimistic. In 
fact, the agreement found is based on several assumptions regarding the experiments of Jaeger et 

al. (1969) and among them, the assumption that homogeneous nucleation, but neither binary nor 
heterogeneous nucleation occurred in the experiments. Hence, the equations are solved with the 
two expressions of J and the results obtained are compared. 

It follows from the theory of homogeneous nucleation that the formation of nuclei under 
supersaturated conditions is due to fluctuations of the fluid density, that is to say from random 
collisions of vapor molecules and clusters. The number of critical size nuclei formed per unit time 
and unit volume in a stationary state is given by 

J = floAZCo. [14] 

In [14],/3~ is the collision frequency of vapor molecules on the unit surface of a cluster and is given 
from the kinetic theory of gases by 

Po 
~ = .~v/(2~rmokT ) , [15] 

where m~ is the mass of a vapor molecule and k the Boltzmann constant. 
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A (n*) is the surface of a critical size nucleus and n* the number of molecules in that nucleus. Z 
is known in the literature as the non-equilibrium factor of Zeldovich and is given by 

Z =A~n,) Vs ~-~ with Vs=t~v/O~No, [16] 

where o. is the surface tension, #~ is the vapor molecular weight and No the Avogadro's number. 
The equilibrium concentration of critical size nuclei Co(n*) is given by 

Co(n*) = c (1)o exp [ - AG*/kT], [17] 

where c(1)o is the initial concentration of molecules and AG* is the maximum value of the free 
energy of formation of critical size nuclei. 

It is expressed by 

AG* = ? o.r .2, [18] 

in which the critical size r* is given by 

2 o  
r* = [19] psRvT In S '  

Ro being the vapor constant. 
For high expansion rates, the steady state nucleation rate J is not established immediately. It 

lags the thermodynamic conditions by a characteristic relaxation time t*. The instationary 
expression for J is 

J, = J[1 - exp ( -  t/t*)]. [20] 

Feder et al. (1%6) give for t* 

fit* = 21r(;~A (n*)Z 2, [211 

where ~r is the mass-accommodation coefficient. 
For the flow conditions investigated here, the flow characteristic time is of the order of 25/~s. 

For nuclei of 50 .~ of an ammonia vapor, at the typical pressure of 0.1 atm. and a temperature of 
200°K in the nucleation zone, the ratio of t* to the flow characteristic time (for an arbitrary value of 

equal to unity) is about 4.10 -4. Hence, the steady state approximation for J is fully justified. 
In the expression for J, the factor which accounts for the nonisothermal character of the 

interactions between the gas molecules and the clusters in the process of dissipation of the latent 
heat of condensation from the nuclei has not been taken into account. Feder et al. (1966) and Lothe 
& Pound (1%9) have shown that that term, which multiplies expression[M], does not change the 
value of J by more than an order of magnitude. Lothe & Pound (1%9) have added statistical 
contributions to AG*, expressing the existence of translational and rotational degrees of freedom 
of the nuclei as rigid spheres. They have also added a term, called the partition function of 
replacement q,, which accounts for the replacement of internal translational and torsional degrees 
of freedom of vibrations of the cluster in the bulk phase by translational and rotational degrees of 
freedom of the cluster in the gas phase. 

The equilibrium concentration Co(n*) is then increased by a factor Q = q,r.qro,/qr in which q,, 
and q,o, are the partition functions of translation and rotation respectively. Lothe & Pound (1%9) 

I.J.M.F., Vol. 3, No. 2--(3 
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estimate a value of q, of the order of 103 so that, under typical conditions in the nucleation zone for 
ammonia, factor Q reaches values of the order of 10C However, some authors, Dunning (1%9) for 
instance, have proposed values of q, which restore an agreement between theoretical predictions 

and experimental results. 
As a consequence of the disagreement on the value of q~ among different authors, the following 

two expressions for J have been used in the present calculations 

= {Po]:l  1"2cr/z~l ''2 [ 4zrr*:cr 1 
Jc,.ss \kT] ps [ - ~ o ]  exp 3 - ~  J '  [22] 

P~ ~ 1/cr \ V(Tr) [21rn*mkT] 3'2 
JL-P =V(E~rmkT) ZVBV~-~ }-'-~- L -~ J 

F81r~I(n*)kT13/2 [ 41rr'2o;] 
x [, h-~ - j  exp L 3kT J" 

[23] 

where h is the Planck constant and I(n*) is the moment of inertia of the nucleus (I(n*)= 
(2/5)n*mor .2 for a sphere). 

For a given temperature, these expressions are proportional to exp [ -  Ktr3/(ln S)2]. Hence, 
they are very sensitive to macroscopic quantities like the surface tension tr and the latent heat of 
condensation, entering the expression of the saturation pressure in S. The values of these 
quantities must be extrapolated for small entities like clusters. For such small sizes, Tolman (1949) 
suggested a correction of the fiat surface value tr® given by 

O'~ ¢ = - -  [24] 
l+81r' 

where 8 is a molecular length. 
Wegener & Parlange (1%7) have proposed a relation between the latent heat of condensation 

and the radius of curvature of the particle surface, which shows that the dependence becomes very 

weak for sizes higher than about 100 ]k. 
In the nucleation zone, the particles are so small (a few tens of Angstr6ms) that there is 

practically no velocity slip with respect to the gas. Indeed, the velocity characteristic relaxation 
time zv given by [12], is proportional to the square of the particle size. For instance, for a nucleus of 
50/~,, z~ is about ,~. 10 -9 s and for a size of 1000/~, it is about 10 -7 s. Thus, To remains negligible with 
respect to the characteristic time of the flow (about 25/zs) in the considered range of sizes. In 
another way, Wegener & Mack (1958) start from Newton's law relating the drag force and the 
particle acceleration in the Stokes' and in the continuum approximations. They calculate that, for 
water droplets and for typical gas viscosity, the particle sizes for which a slip velocity of 1% of the 
flow speed (vo/vo = 1.01) is allowed are obtained by 

r 2 - 10-g/(dv, Idx). [25] 

In the expansions considered here, a typical value of dv~/dx is about 10 ~ s -~ and the 
corresponding computed droplet size from [25] is 10 -7 m .  AS the computed Knudsen number Kn~ 
is of the order of 10, the calculation has to be made with free molecule values of the drag coefficient. 
In the conditions investigated here, the computed sizes are of the order of 10-7m too. 

There is also practically no temperature difference between the phases since , r  is of the same 
order of magnitude as ~'~. Moreover, for a mixture of a vapor and an inert gas, the latter favors the 
equalization of the phase temperatures. Indeed, in its interactions with the condensed phase, the 
inert gas plays the role of a heat sink. From the energy conservation for a particle established by 
Hill (1966) and Hill et al. (1%3), expressing the balance between the different energy fluxes 
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associated with the mass fluxes of incident, reflected ratio and reemitted molecules, an approximate 
expression of the temperature T,,I To may be obtained. In that expression, the influence of the inert 
gas is described as follows: the ratio of the phase temperatures decreases when either the partial 
pressure ratio Pi/Pv or the molecular weight ratio/zd/z, increases. That is physically explained by the 

fact that the latent heat of condensation released to the gas by absorption of vapor molecules into the 
nuclei is carried away due to the collisions of the gas molecules on the particle surfaces. The 
approximation of temperature equilibration between the phases is hence all the more accurate as the 
number of collisions of inert gas molecules between two collisions of vapor molecules on a nucleus is 
large. 

The application of the mathematical model of condensation to a one-dimensional flow, for 
stationary conditions and in the approximation of the equality of the phase velocities and 
temperatures, leads to the following system of equations: 

(1) Continuity equation 

puA = lh = const., [26] 

where p( =#o +pp) is the density of the two-phase fluid, u( = vo = v~) is its velocity, A is the 
nozzle cross-section and rh the total mass flow rate. 

(2) Equation of motion 

du dP 
Pu'~-x = d x '  [27] 

(3) energy equation 

1 2 ~u +Cpo(T-To)-XpL=O, [28] 

where T( = To = T~) is the two-phase fluid temperature, To and C~o the temperature and the 
specific heat of the gas mixture in the stagnation chamber respectively and X, the condensate mass 
fraction. The latter quantities are expressed as follows 

Cpo = (1 - Xvo )Crt + X~ocpv, [29] 

where X~o is the vapor mass fraction in the stagnation chamber and c~ and coo the specific heats of 
the inert gas and the vapor respectively; 

X~ = ~e.p; Xv = ~-" and Xp + Xo = Xoo, [30] 

where rhp and rh~ are the local mass flow rates of the condensed phase and the vapor respectively. 

To close the system of equations, a state equation is used and an expression for the condensate 
mass fraction X~ is established. The state equation for the gas is 

I-l-X~o 1 x ~ - x .  1 ]7, 
P = P°R [-il --S-~ ~ + -l--~p I~ J [31] 

where/~, and ~o are the molecular.weights of the inert gas and the vapor respectively and R the 
universal gas constant. In this way, the five unknowns p, u, P, T and Xp are obtained from five 
equations. 

The physical process leading to the formation of the condensed phase at a point of observation 
located at a distance x of the nozzle throat allows the establishment of an expression for Xp. The 
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condensate mass observed at x is due, on the one hand to the creation of critical size nuclei in 
section x and on the other hand, to the growth of nuclei born in previous sections x' and observed at 
X. 

The radius of the latter nuclei is given by 

r(x,x'):r*(x')+ ff dr [32] 

and their mass is 

m(x, x') = ~ p, r3(x, x'). [33] 

The number of particles nucleated per unit time in the elementary volume A (x') dx' about x' is: 
J(x')A(x') dx'. Hence, the mass fraction of condensed phase observed at x is 

Xp (x ) = 4¢rp~ f ~ r3(x ' x')J (x')A (x') dx', 
3th A, 

[34] 

where x, is a point at which the state of the vapor is the theoretical saturation one (J = 0). In that 
expression, r(x, x') depends upon the whole history of the processes of creation and growth of the 
particles and is itself obtained by an integral in [32]. The numerical computation of Xp by [34] 
consists in following the evolutions of the particles formed at all the positions x' along their 
streamlines from xs to x. For each position x of the computation, the values of the size r(x, x') at all 
the positions x' between xs and x must be stored. That computational technique, although possible, 
is very cumbersome. Therefore, the integral in [34] is eliminated. A first differentiation of X, (x) 
yields: 

d Xp = 41rps ~ ' 
[35] 

The physical meaning of that expression is clear: the first term represents the condensate mass 
appearing by nucleation in section x and the second one represents the condensate mass due to the 
growth of particles previously formed in sections x'(x, <<- x' <~ x). 

Equation [35] still contains an integral and the particle growth law. In the conditions 
investigated here, the gas mean free path varies typically between 10 -7 and 10 -6 m and the mean 
size of the particles from 100 to 1000 ]k. The Knudsen number Knp is thus of the order of 10. Hence, 
the gas flows around a particle in the free molecular regime. From the kinetic theory of gases, a 
particle growth law may then be obtained from the balance of two opposite molecular fluxes; one 
obtains 

dr dr ~ 1 [ PV_~o Po ] 
d-~ = u~-  = ¢p,X/(2~rRo) ) ~/-~p) , [36] 

where Po is the saturation pressure of the vapor at the particle surface. It is given by the Helmholz 
equation as 

Po( Tp) = P~( Tp) exp [2tr/(psRvTpr)], [37] 

where P~ is the theoretical saturation pressure given by the Clausius-Clapeyron relation, i.e. 

[R-- ro [1- P®(T.) = Po exp \ T. } J '  [38] 
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in which Po and To represent a reference state on the theoretical saturation curve. 
In a free molecular environment, (dr/dr) does not depend any longer upon the particle radius 

r(x, x') for sizes larger than about 50 ~, since Po/P® is then about equal to unity. As larger sizes are 
rapidly reached in the nucleation zone, the growth law acts practically in the same way on all 
particles independently of their size during most of the condensation process. 

As dr/dx does not depend on r, it no longer depends on the condensation history. Hence it is no 
longer a function of x' but only of x. Therefore it may come out of the integral in [35]. 

After four differentiations of the different integrals, [35] is then replaced by the following four 
differential equations 

dFi= JAr*' + i-~ F, ,(i =0,1,2,3).  
dx 

[39] 

4~r F xp =~-~p, , .  

with 

and 

~x x 
Fi = r'(x,x')J(x')A(x')dx'(i =0,1,2,3).  

s 

The condensate mass fraction is then obtained by 

[40] 

The mean size is given by: 

Although the knowledge of the quantities F~ does not allow a plotting of the size distribution 
curve observed at a position x, it gives quantitative indications about that distribution. 

The total number of particles observed at the position x per unit time is 

Zo ~ Fo. [41] 

Z~ = ~ = F1/Fo. [42] 

The second and third centered relative moments, quantifying the dispersion and the distortion of 
the distribution respectively, are expressed by 

=F _IF' Y 
Z 2 - ( r - F )  2 = r  2 - (e )  2 Fo \Fo] '  

F3 FI F2 /F1\3 
Z3 -- (r - F) 3 = r 3 - 3r2~ + 2(F) 3 = ~ - 3-~-.ro ff~o + 2 [-~-I, 

k / o /  

~x x 
_ r'  (x, x ' ) J ( x ' ) A  (x ' )  dx' 
F| = s 

Jx ~ J(x')A (x') dx' 
s 

F, 
= ff~o (i = 1,2, 3). [45] 

[431 

[441 

The quantities F~ are the moments of the size distribution of all the particles observed at x and are 
given by 
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After some algebraic manipulations, [35] is replaced by the following four differential equations 

dZo 
dx = JA, [46] 

dZ, JA,  , ~x 
dx - Zoo tr - Z,) + , [47] 

dZ___~2 = JA [ ( r *  - Z , )  2 - Z2],  
dx Zo 

[ 4 8 ]  

dZ3 = JA [(r* - Z l )  3 - 3(r* - Z,)Z2 - Z3]. 
dx Zo 

[49] 

For the numerical treatment of these equations by the Runge-Kutta-Gill method, the following 

initial conditions for the quantities Z are used 

Z,(o)=o at thenozz le throatx=o(i=O,  1,2,3). 

The condensate mass fraction is then obtained by 

X~ = ~ Zo[Z3 + 3Z,Z2 + (Z,)3]. [50] 

The treatment of the system [46]-[49] instead of [35] for Xp allows avoidance of the numerical 

computation of an integral along the particle streamlines, as Chmielewski & Sherman (1970) have 

done. Thanks to that treatment we achieve a substantial economy of the occupation of the 

computer memory and a reduction of computational time. 
The four quantities Z and their evolutions already give a good idea of the shape of the particle 

size distribution and its evolution. However, the size distribution curves shown in figure 3 are 

generated by a numerical step by step procedure. At each new step, x + Ax, the curve is shifted due 

0.5 3 

x_e_p 

0.3 

0.2 

1 

r 111 

(p) 

0 2 3 4 5 A / A  c 

Figure I. Distributions of the reduced mass-fraction X,/Xvo and of the surface-averaged mean size (p2 = F2/Fo 
in micron) of nuclei of the condensed phase of a NH3 vapor in function of the reduced area A/Ac. Curve 1: 
Xvo = 0.2; inert gas = air; J = JL P, [23]. Curve 2: Xvo = 0.1; inert gas = air; J = JL-P, [23]. Curve 3: Xvo = 0.2; 
inert gas = helium; J = JL p. [23]. The other parameters, kept constant, are: Po = 2 atm; To = 265°K; 
mass-accommodation coefficient: ~ = 1; half-angle of the divergent of a two-dimensional straight nozzle: 4°; 

throat area: Ac = 2 -  10 s m2; throat height: h = 3 8 . 1 0 - "  m;  o , / ~  = 1. 
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to the growth of the particles existing at x and arriving at x + Ax. They are all growing in the same 
way since the growth law [36] is independent of the particle size. Hence, the change of shape of the 
curves in the nucleation zone is only due to the addition to the distribution of the new nuclei formed 
at critical size at x + Ax. The shape and the evolution of the size distribution curve in the nucleation 
zone are physically explained from the evolutions of the nucleation rate J and the critical size r*. 
Indeed, the gradients of quantities Z contain expressions proportional to J and depending on r*. 
The quantities J and r* vary in opposite sense (see figure 2) and reach their extrema at the same 
point in the nozzle. At the beginning of the nucleation process, the first nuclei are formed at a size 
r* and in number J per unit time and unit volume, both determined by the value of the local 
supersaturation S. As the point of observation moves downstream in the nozzle, the supersatura- 
tion increases and new nuclei are created at a smaller size r* and in a higher number J. The particle 
size distribution curves (1-5 in figure 3) are built up in that way. As long as J and r* have not both 
reached their extrema, these curves evolve due to the particle growth which increases the size of all 
the particles with the same amount and leads to a variation of the mean size as shown by [47]. As 
soon as the point of observation proceeds beyond the position of the maximum value of J, the 
nuclei are formed in a smaller number J and at a higher size r*. But the increase in r * is smaller than 
the increase in size of the preexisting nuclei by growth so that the distribution curve exhibits a 
maximum (like curves 6-9). As J becomes negligible, no new nuclei are created and the particles all 
grow in the same way since the growth law is independent of the size. Consequently, the size 
distribution curve translates, without change of shape, along the size axis (curves 8 and 9). 

S T U D Y  OF T I l E  G R O W T H  Z O N E  

As the rate of condensate mass production by formation of critical size nuclei becomes 
negligible with respect to the rate of condensation by growth of the existing nuclei, the values of J 
become negligible compared to its maximum value. The supersaturation state collapses and the 
nucleation zone ends. 

The computational results show that the mean size of the particles does not exceed one micron. 
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Figure 2. Variations of the nucleation rate J(m ' .  s- ' ) ,  of the supersaturation S and of the critical size r* (in ,~) 
with A/Ac in the nucleation zone for an ammonia-air mixture. Curve 1: Xvo = 0.2; inert gas = air; J = JL ~, 
[23]. Curve 2: Xvo = 0.2; inert gas = air; J = Jc,,,. [22]. The other parameters, kept constant, are the same as in 
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Figure 3. Distribution of the reduced particle" number per unit volume n.(r)/n~,la • with n. = fT. n.(r) dr, of NH~ 
particles in function of their surface-averaged mean size r( = (F2/Fo) m ~) at various locations in the 
condensation zone. 

Curve 1 2 3 4 5 6 7 8 9 
A/Ac 1.14 1.19 1.225 1.24 1.25 1.255 1.26 1 .27  1.28 

x(mm) 3.84 5.42 6 .21  6.71 6.9 7.10 7.23 7.5 7.68 
(distance 

from throat) 

From [25], the no slip condition is still a good approximation. For such sizes, the thermal 
equilibrium condition remains valid too. 

In the growth zone, the values of J become negligible. The system [46]-[49] becomes 

Zo - Fo = const., [51] 

dZj dF dr 
dx - dx = dx ' [52] 

Z2 -- (r - ~)2 = const., [53] 

Z3 - (r - e)~ = const. [54] 

As Zo, Z2 and Z3 have been computed at the end of the nucleation zone, they are known 
everywhere in the growth zone since they are conserved. 

That system has a physical meaning. As no new nuclei are created in the growth zone, the 
number of particles passing at a position x per unit time remains constant. As the particle size 
distribution function moves along the size axis without any change of shape, all the moments are 
conserved in that translation. In particular Z2 and Z3, characterizing the dispersion and the 
distortion of the distribution, remain constant. Moreover, the curve is shifted due to the variation 
of the mean size F which is the same as the variation of the individual sizes r. 

The advantage of this new formulation of the differential equations describing the particle cloud 
is essentially of a numerical nature. Indeed, the system [46-49] leading to the computation of the 
condensate mass fraction in the nucleation zone becomes a system of only one differential equation 
and three algebraic equations in the growth zone. These latter give the quantities Zo, Z2 and Z3 
exactly and make programming easier. Hence, that formulation leads to an increase in the 
numerical precision and to a reduction of the computational time. As it is used in the largest part of 
the condensation zone, it also leads to a significant reduction in the computational cost. 
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ANALYSIS OF THE RESULTS AND CONCLUSIONS 
The influence of the presence of an inert gas on the condensation process of a vapor is analyzed. 

The numerical results show that an increase of the mass fraction X, of the inert gas in the nozzle 
reservoir leads to a shift of the onset point of measurable condensation downstream from the 
nozzle throat. This may be physically explained by a decrease of the velocity of the gaseous 
mixture ammonia-air before the onset of condensation. Indeed, as #, is larger than/~, an increase 
of X~ results in an increase of the mean molecular mass/2 of the gaseous mixture at a given nozzle 
position and accordingly in a decrease of its velocity. It follows that the thermodynamic conditions 
of condensation (Wilson point) are reached farther downstream in the expansion. Moreover, an 
increase of X~ for the ammonia-air mixture results in an enlargement of the nucleation zone. 

If the inert gas is helium, an increase of X~, resulting in a decrease of/2 (/~, being smaller than 
#~), gives rise to an increase of the expansion rate. It follows that a shift of the onset point of 
condensation towards the nozzle throat occurs. 

Figure 1 shows that the inert gas is really a sink for the latent heat of condensation. An increase 
of X, for a given inert gas results in an increase of the condensation rate (see curves 1 and 2 for 
Xo [Xoo). For a given X~, the condensate mass production rate increases faster for helium whose 
specific heat is larger than for air (see curves 1 and 3). As 3/, increases, the particles have a smaller 
size. That effect is still more marked as the inert gas is helium. 

The computational results show that an increase of X~ for the ammonia-air mixture results in a 
softening of the condensation peak. For an increase of Xj from 0 (pure vapor) to higher values, the 
condensation peak, at first well marked, softens, flattens and finally disappears. These phenomena 
are explained from the expression of the pressure gradient deduced from [26]-[31], i.e. 

1 dP 
P dx 

1 dA+____~l [ L 5 ] d X p  

A dx 1 -Xe  [ ~ T e T - ~ J  dx 

1 - (1 - X e ) ' ~ -  ~/~'~e 

with 

M2 = a~lu~ = y g T l u 2 ,  R = R / ~ ,  ~p = C~,o + Xj,(c.  - cp~) 

and with 

1 
7/= 

1 ~ Xp c~' 
1-xp ep 

where ~/is the specific heat ratio of the gas mixture and M the frozen Mach number. The pressure 
distribution essentially depends on two terms: the effect of the nozzle geometry and the effect of 
the phase change. In a supersonic flow (M > 1), as the effect of the change of phase dominates the 
nozzle expansion rate, a pressure jump is observed (see figure 4). In the opposite case, the pressure 
decreases monotonically everywhere. When the two effects have values of the same order, the 
peak disappears and the pressure profile exhibits a flat section. 

From figure 2 it is evident that the nucleation zone obtained by the use of the Lothe & Pound 
(1969) expression of J [23] is quite different from that obtained with the classical expression [22]. 
The onset point of condensation moves downstream and the nucleation zone is wider when the 
classical J is used. The numerical/esults show that the deviations of the pressure, temperature and 
velocity distributions from the isentropes are smaller and that the condensation rate is slower with 
the use of the classical J. 

Figure 4 shows a comparison of computed results for ammonia in mixture with air with Jaeger's 
experimental data (1969). There is a generally close agreement between theoretical and 
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Figure 4. ROducod pressure profiles in function of the reduced area A/Ac for condensation of ammonia in 
mixture with air in ]aeger's two-dimensional straight nozzle (nozzle H in reference: Jaeger et oL ]969). Dashed 
line: isentropic expansion, Dotted Hne: theoretical profile computed by Jaeger, Continuous line: theoretical 
profile computed in the present work, Circles: experimental data of Jaeger et aL (1969). The different 

parameters are: Po = 4.054 atm.; To = 283.7°K; Xvo = 0.169; inert gas = ak; ~ = 1; ~/(r= = 1; ] = ]L-P [23]. 

experimental results. Our numerical results disagree with those of Jaeger (1969) in the region of the 
onset point of condensation. The discrepancy in the pressure distributions in the nucleation zone is 
mainly due to uncertainties in the value of certain quantities like the replacement partition 
function, the surface tension, the saturation pressure and the mass- and thermal-accommodation 
coefficients. 

In conclusion, our new formulation of the differential equations describing the particle cloud is 
physically closely related to the size distribution and leads to some substantial numerical 
advantages, principally in the growth zone. The validity of the mathematical model developed in 
this paper has been tested by comparison of theoretical predictions with experimental data and has 
been found satisfactory. 
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